Doidge-Harrison, M. S. V., Howie, R. A., Irvine, J. T. S., Spencer, G. M. \& Wardell, J. L. (1992). J. Organomet. Chem. 436, 23-33.

Doidge-Harrison, M. S. V., Irvine, J. T. S., Khan, A., Spencer, G. M., Wardell, J. L. \& Aupers, J. H. (1996). J. Organomet. Chem. 516, 199-205.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. EnrafNonius, Delft, The Netherlands.
Ferguson, G. (1997). PRPCIF97. A WordPerfect-5.1 Macro to Merge and Polish CIF Format Files from NRCVAX and SHELXL97 Programs. University of Guelph, Canada.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. Molecular Geometry Program. Version of March 1998. University of Utrecht, The Netherlands.

Acta Cryst. (1998). C54, 1401-1403

Tetraethylammonium Bromo(1,3-dithiol-2-one-4,5-dithiolato)diethylstannate(1-)

Zahid H. Chohan, ${ }^{a}$ James L. Wardell, ${ }^{a}$ John N. Low, ${ }^{b}$
Paul R. Meehan ${ }^{c}$ and George Ferguson ${ }^{c}$
${ }^{a}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, ${ }^{b} A M R C$,
Department of Applied Physics and Electronic \& Mechanical Engineering, University of Dundee, Dundee DDI 4HN,
Scotland, and 'Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada NIG 2W1. E-mail: j.n.low@dundee.ac.uk

(Received 26 March 1998; accepted 23 April 1998)

Abstract

In the title compound, tetraethylammonium bromo-[4,5-dimercapto-1,3-dithiol-2-onato(2-)- S^{4}, S^{5}]diethylstannate (1-), $\left[\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}\right]\left[\mathrm{SnBr}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{3} \mathrm{OS}_{4}\right)\right]$, the anion lies about a mirror plane and the Sn atom has distorted trigonal-bipyramidal geometry, with axial distances $\mathrm{Sn}-\mathrm{Br} 2.8776$ (16) and $\mathrm{Sn}-\mathrm{S} 2.562$ (2) \AA, and equatorial distances $\mathrm{Sn}-\mathrm{S} 2.458$ (2) and $\mathrm{Sn}-\mathrm{C}$ 2.111 (7) \AA. The $\left[\mathrm{NEt}_{4}\right]^{+}$cation is disordered about an inversion centre.

Comment

Various tin complexes of the dithiolato ligand 1,3-dithiole-2-thione-4,5-dithiolato $\left[\mathrm{C}_{3} \mathrm{~S}_{5}^{2-}\right.$, (I)] have been studied (Doidge-Harrison et al., 1991, 1996; DoidgeHarrison, Howie, Irvine, Spencer \& Wardell, 1992; Doidge-Harrison, Howie, Irvine \& Wardell, 1992;

Buchanan et al., 1996; Aupers et al., 1998; Khan et al., 1998). These include complexes of the type [$Q]\left[R_{2} \mathrm{Sn} X\right.$ $\left.\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)\right][(\mathrm{II}) ; Q$ is an onium cation; $R=$ alkyl or aryl; $X=$ halide or pseudohalide], which contain near trigonalbipyramidal Sn centres (Doidge-Harrison et al., 1991; Aupers et al., 1998; Khan et al., 1998).

Compounds of the related dithiolato ligand 1,3-di-thiol-2-one-4,5-dithiolato [(III), dmio, $\mathrm{C}_{3} \mathrm{OS}_{4}^{2-}$] have attracted much less study. A search of the October 1997 release of the Cambridge Structural Database (Allen \& Kennard, 1993) yielded only six hits for such complexes [with Ti (Zeltner et al., 1994), Ni (Olk et al., 1988; Vicente et al., 1988; Sun et al., 1997), Cu (Vicente et al., 1987) and W (Yang et al., 1991)]. We report here the structure of the title compound, $\left[\mathrm{NEt}_{4}\right]^{+} .\left[\mathrm{Et}_{2} \mathrm{SnBr}\left(\mathrm{C}_{3} \mathrm{OS}_{4}\right)\right]^{-}$, (IV), which exists as an ionic species, with negligible interactions between the cations and anions.

(IV)

The anion has the Sn, Br and dmio ligand atoms lying on a mirror plane and the geometry about tin (Fig. 1) is slightly distorted trigonal bipyramidal, with the Br and a dithiolato S atom in axial sites $[\mathrm{Br} 1-\mathrm{Sn} 1-\mathrm{S} 2$ $167.07(7)^{\circ}$]; the equatorial sites are occupied by the ethyl ligands and the other dithiolate S atom. As expected, the axial $\mathrm{Sn}-\mathrm{S}$ bond is longer than the equatorial one [Sn1--S2 2.562 (2) and Sn1-S1 2.458 (2) A]. The $\mathrm{Sn}-\mathrm{Br}$ bond length in (IV) [2.8776(16) \AA] is considerably longer than the sum of the covalent radii

Fig. 1. A view of (IV) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The symmetry code is as in Table 2.
($2.39 \AA$), but well within the sum of the van der Waals radii (4.0-4.2 \AA; Huheey et al., 1993). The $\mathrm{Sn}-\mathrm{Br}$ bond length in $\left[1,4-\mathrm{Me}_{2}\right.$-pyridinium $]\left[\mathrm{Ph}_{2} \mathrm{SnBr}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)\right]$ [2.7139 (10) \AA; Aupers et al., 1998] is considerably shorter than that determined here for (IV), but still longer than the sum of the covalent radii.
The bite angle (S1-Sn1-S2) of the dmio ligand in (IV) is $87.15(7)^{\circ}$. While the sum of the equatorial bond angles $\left[357.6(5)^{\circ}\right.$] is near 360°, the $\mathrm{C}-\mathrm{Sn}-$ C bond angle is surprising large at $135.4(5)^{\circ}$. In related complexes such as $[Q]\left[R_{2} \mathrm{SnX}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)\right]$, which also contain trigonal-bipyramidal anions, the $\mathrm{C}-\mathrm{Sn}-$ C equatorial angles are all less than that found in (IV), being in the range $110.5(3)-120.9(6)^{\circ}$ (DoidgeHarrison et al., 1991; Aupers et al., 1998; Khan et al., 1998). The bite angles of the dmit ligands in (II) are in the range $84.5(1)-86.55(6)^{\circ}$ and hence are only slightly smaller than that in (IV).

The N atom of the $\left[\mathrm{NEt}_{4}\right]^{+}$cation lies at the inversion centre at ($0,0,0$), which requires that the ethyl groups be disordered (see Experimental). Examination of the structure with PLATON (Spek, 1998) showed that there were no solvent-accessible voids in the crystal lattice.

Experimental

A solution of $\mathrm{Et}_{2} \mathrm{SnBr}_{2}(0.52 \mathrm{~g}, 2.0 \mathrm{mmol})$ in MeOH (20 ml) was added to a stirred suspension of bis(tetraethylammonium) bis(1,3 -dithiol-2-one-4,5-dithiolato)zincate ($2-$) (0.69 g , 1.0 mmol ; Chohan et al., 1997) in $\mathrm{MeOH}(20 \mathrm{ml})$. The reaction mixture was stirred for 3 h and filtered. The precipitate was recrystallized from MeOH (yield $0.75 \mathrm{~g}, 76 \%$; m.p. $415-$ 416 K). Analysis found: C 31.9, H 5.1, N 2.6%; calculated for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{BrNOS}_{4} \mathrm{Sn}$: C 31.5 , H 5.2, N 2.4%; IR (KBr , cm^{-1}): $3055,3002,2986,1665,1612,1590,1475,1451$, 1414, 1395, 1302, 1177, 1020, 998, 892, 690, 492, 466; 'H NMR ($250 \mathrm{MHz}, \mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta: 1.20[t, 6 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=8.1 \mathrm{~Hz}$, $J\left({ }^{19} \mathrm{Sn}-1 \mathrm{H}\right)=120 \mathrm{~Hz}, \mathrm{CH}_{3}$ of the anion], $1.41[t t, 12 \mathrm{H}, J(\mathrm{H}-$ $\mathrm{H})=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}$ of the cation], $1.59[q, 4 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=8.1 \mathrm{~Hz}$, CH_{2} of the anion], $3.32\left[q, 8 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of the cation]; ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$) $\delta: 7.5\left(\mathrm{CH}_{3}\right.$ of the cation), $11.8\left[J\left({ }^{119} \mathrm{Sn}^{-13} \mathrm{C}\right)=40.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of the anion], 23.5 $\left[J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right)=535 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of the anion], $52.7\left(\mathrm{CH}_{2}\right.$ of the cation), $119.4(\mathrm{C}=\mathrm{C}), 192.5(\mathrm{C}=\mathrm{O})$) ${ }^{119} \mathrm{Sn}$ NMR (93 MHz , $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta:-169.7$.

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)\left[\mathrm{SnBr}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2-}-\right.$
$\left(\mathrm{C}_{3} \mathrm{OS}_{4}\right)$]
$M_{r}=567.24$
Orthorhombic

Pnma

$a=11.0167(10) \AA$
$b=13.6197$ (8) \AA
$c=15.4733(11) \AA$
$V=2321.7(3) \AA^{3}$
$Z=4$
$D_{x}=1.623 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
empirical via ψ scans at
4° steps (North et al.,
1968)
$T_{\text {min }}=0.320, T_{\text {max }}=0.529$
5777 measured reflections
2771 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.153$
$S=1.021$
2771 reflections
123 parameters
H atoms constrained
$u^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0931 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$

1606 reflections with

$$
\begin{aligned}
& I>2 \sigma(I) \\
& R_{\text {int }}=0.038 \\
& \theta_{\text {max }}=27.90^{\circ} \\
& h=0 \rightarrow 14 \\
& k=-17 \rightarrow 17 \\
& l=0 \rightarrow 20
\end{aligned}
$$

3 standard reflections frequency: 120 min intensity variation: 0.7%

$$
\begin{aligned}
& \Delta \rho_{\max }=0.677 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\mathrm{min}}=-0.480 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \\
& \text { SHELLS97 } \\
& \text { Extinction coefficient: } \\
& 0.0032 \text { (5) } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crystallography (Vol. C) }
\end{aligned}
$$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\mathrm{cq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	$!$	Σ	$U_{\text {eq }}$
Brl	0.24897 (16)	1/4	0.724 .31 (14)	0.1751 (9)
Snl	0.02077 (5)	1/4	0.63382 (3)	0.0563 (3)
S 1	0.16176 (18)	1/4	0.51072 (15)	$0.0700(6)$
S2	-0.15191 (18)	1/4	0.52294 (15)	0.0721 (6)
S 3	0.1217 (3)	1/4	0.32209 (15)	0.0814 (7)
S4	-0.1405 (3)	1/4	0.33163 (15)	0.0799 (7)
Cl	-0.0046 (8)	0.3934 (6)	0.6823 (6)	0.115 (3)
C2	0.0171 (12)	0.4734 (8)	$0.6180(10)$	0.238 (10)
C3	0.0564 (6)	1/4	0.4247 (5)	$0.0500(17)$
C4	-0.0604 (6)	1/4	0.4293 (5)	0.0473 (16)
C5	-0.0123 (10)	1/4	0.2628 (6)	0.079 (3)
Ol	-0.0197 (9)	1/4	0.1859 (4)	0.118 (3)
Nl	0	0	0	0.0567 (16)
C11才	-0.0779 (11)	-0.0558 (8)	0.0621 (8)	0.116 (3)
C12 \ddagger	-0.171 (2)	$0.0070(16)$	$0.1055(18)$	0.091 (4)
C13†	0.0685 (12)	0.0777 (8)	0.0471 (8)	0.116 (3)
C14 \dagger	0.143 (2)	0.0385 (14)	0.1206 (13)	0.129 (5)
$\mathrm{C} 21 \dagger$	0.0820 (11)	-0.0683 (8)	-0.0426 (8)	0.116 (3)
$\mathrm{C} 22 \dagger$	0.1603 (15)	$-0.0298(12)$	-0.1134 (11)	0.091 (4)
$\mathrm{C} 23 \dagger$	-0.0786 (11)	0.0540 (8)	-0.0630 (8)	0.116 (3)
C24 \ddagger	-0.163 (3)	-0.0141 (18)	$-0.110(2)$	0.129 (5)
C15§	-0.039 (3)	$-0.1633(10)$	0.060 (2)	0.097 (11)
C25§	-0.035 (3)	0.1614 (10)	-0.063(2)	0.097 (11)
\dagger Site occup	$\begin{aligned} & \text { ccupancy }=0 \\ & \text { cy }=0.183 \end{aligned}$	\ddagger Site o	upancy $=0.31$	(9). § Site

Table 2. Selected geometric parameters (\AA, ${ }^{\circ}$)

Brl -Snl	2.8776 (16)	S2-C4	1.765 (8)
Snl-S1	2.458 (2)	S3-C3	1.744 (7)
$\mathrm{Sn} 1-\mathrm{S} 2$	2.562 (2)	S3-C5	1.739 (10)
$\mathrm{SnI}-\mathrm{Cl}$	2.111 (7)	S4-C4	1.750 (7)
S1-C3	1.765 (8)	S4-C5	1.770 (10)
$\mathrm{Brl}-\mathrm{Snl}-\mathrm{Sl}$	79.92 (7)	$\mathrm{S} 1-\mathrm{Sn} 1-\mathrm{S} 2$	87.15 (7)
$\mathrm{Brl}-\mathrm{Snl}-\mathrm{S} 2$	167.07 (7)	$\mathrm{Sl}-\mathrm{Snl}-\mathrm{Cl}$	111.1 (2)
$\mathrm{Brl}-\mathrm{Snl}-\mathrm{Cl}$	86.7 (2)	$\mathrm{Cl}-\mathrm{SnI}-\mathrm{Cl}^{\prime}$	135.4 (5)
Symmetry code	$-1,2$		

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=10.04-15.27^{\circ}$
$\mu=3.184 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Block
$0.40 \times 0.40 \times 0.20 \mathrm{~mm}$
Colourless
\dagger Site occupancy $=0.50 . \quad \ddagger$ Site occupancy $=0.317$ (9). \quad § Site occupancy $=0.183(9)$.

Molecule (IV) crystallized in the orthorhombic system; space group Pnma or Pn2 ${ }_{1} a$ from the systematic absences. Both possibilities were examined in considerable detail and Pnma eventually selected after refinement in $P n 2_{1} a$ led to various non-sensible parameters. The anion lies on a mirror plane; the N atom of the $\left[\mathrm{NEt}_{4}\right]^{+}$cation is on a crystallographic centre of symmetry which requires that the ethyl groups be disordered equally over two sites with 0.5 occupancy. Detailed inspection of successive difference-map plots showed clearly that two of the terminal methyl groups of the cation were each further disordered unequally over at least two sites. Sites for these groups were located from a difference Fourier plot and restrained to maintain sensible geometry using appropriate DFIX instructions during the SHELXL97 (Sheldrick, 1997) refinement. Site occupancies for these disordered methyl C atoms refined to 0.317 (9) (for C12 and C24) and 0.183 (9) (for Cl 5 and C 25). All non- H atoms of the anion and the N atom of the cation were allowed anisotropic displacement parameters. The partial-occupancy C atoms of the cation were only allowed isotropic motion. A view of the conformation of the cation is deposited. H atoms were treated as riding atoms ($\mathrm{C}-\mathrm{H} 0.96-0.97 \AA$), but no allowance was made for the H atoms of the minor components of the cation.

Data collection: CAD-4-PC (Enraf-Nonius, 1992). Cell refinement: SET4 and CELDIM in CAD-4-PC. Data reduction: DATRD2 in NRCVAX96 (Gabe et al., 1989). Program(s) used to solve structure: NRCVAX96 via Patterson heavyatom method. Program(s) used to refine structure: NRCVAX96 and SHELXL97. Molecular graphics: NRCVAX96, ORTEPII (Johnson, 1976) and PLATON (Spek, 1998). Software used to prepare material for publication: NRCVAX96, SHELXL97 and WordPerfect macro PRPCIF97 (Ferguson, 1997).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1200). Services for accessing these data are described at the back of the journal. A simplistic view of the cation which does not show the disorder introduced by the inversion centre at the N atom has also been deposited.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Aupers, J. H., Cox, P. J., Doidge-Harrison, S. M. S. V., Howie, R. A., Khan, A., Spencer, G. M. \& Wardell, J. L. (1998). Polyhedron. In the press.
Buchanan, H., Howie, R. A., Khan, A., Spencer, G. M., Wardell, J. L. \& Aupers, J. H. (1996). J. Chem. Soc. Dalton Trans. pp. 541-548.
Chohan, Z. H., Howie, R. A., Wardell, J. L., Wilkens, R. \& DoidgeHarrison, S. M. S. V. (1997). Polyhedron, 16, 2689-2696.
Doidge-Harrison, S. M. S. V., Howie, R. A., Irvine, J. T. S., Spencer, G. M. \& Wardell, J. L. (1991). J. Organomet. Chem. 414, C5-C8.

Doidge-Harrison, S. M. S. V.. Howie, R. A., Irvine, J. T. S.. Spencer, G. M. \& Wardell, J. L. (1992). J. Organomet. Chem. 463, 23-33.

Doidge-Harrison, S. M. S. V., Howie, R. A., Irvine, J. T. S. \& Wardell, J. L. (1992). Polyhedron, 11, 2223-2229.

Doidge-Harrison, S. M. S. V., Irvine, J. T. S., Khan, A., Spencer, G. M., Wardell, J. L. \& Aupers, J. H. (1996). J. Organomet. Chem. 516, 199-205.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. EnrafNonius, Delft, The Netherlands.
Ferguson, G. (1997). PRPCIF97. A WordPerfect-5.1 Macro to Merge and Polish CIF Format Files from NRCVAX and SHELXL97 Programs. University of Guelph, Canada.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Huheey, J. E., Keiter, E. A. \& Keiter, R. L. (1993). In Inorganic Chemistry, 4th ed. New York: Harper Collins.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5I38. Oak Ridge National Laboratory, Tennessee, USA.
Khan, A., Low, J. N., Wardell, J. L. \& Ferguson, G. (1998). Acta Cryst. C54, 1399-1401.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Olk, R.-M., Dietzsch, W., Kohler, K., Kirmse, R., Reinhold, J., Hoyer, E., Golic, L. \& Olk, B. (1988). Z. Anorg. Allg. Chem. 567, 131-144. Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. Molecular Geometry Program. Version of March 1998. University of Utrecht, The Netherlands.
Sun, S. Q., Zhang, B., Wu, P. J. \& Zhu, D. B. (1997). J. Chem. Soc. Dalton Trans. pp. 277-281.
Vicente, R., Ribas, J., Alvarez, S., Segui, A., Solans, X. \& Verdaguer, M. (1987). Inorg. Chem. 26, 4004-4009.

Vicente, R., Ribas, J., Zanchini, C., Gatteschi, D., Legros, J.-P., Faulmann, C. \& Cassoux, P. (1988). Z. Naturforsch. Teil B, 43, 1137-1143.
Yang, X., Freeman, G. K. W., Rauchfuss, T. B. \& Wilson, S. R. (1991). Inorg. Chem. 30, 3034-3038.

Zeltner, S., Dietzsch, W., Olk, R.-M., Kirmse, R., Richter, R., Schroder, U., Olk, B. \& Hoyer, E. (1994). Z. Anorg. Allg. Chem. 620, 1768-1776.

Acta Cryst. (1998). C54, 1403-1406

Deca- μ-acetato-di- μ_{4}-oxo-tetra(pyridine- N)dimanganese(III)tetramanganese(II) Pyridine Solvate

Peter Karsten and Joachim Strähle
Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany. E-mail: joachim.straehle@uni-tuebingen.de

(Received 30 October 1997; accepted 21 April 1998)

Abstract

The title compound, $\left[\mathrm{Mn}_{6} \mathrm{O}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{10}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$]. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, consists of well separated $\left[\mathrm{Mn}_{6} \mathrm{O}_{2}(\mathrm{OAc})_{10} \mathrm{py}_{4}\right]$ complex units (OAc is acetate and py is pyridine) and pyridine solvent molecules. Six Mn atoms with distorted octahedral coordination spheres are connected by bridging oxo and acetato ligands. The $\mathrm{Mn}-\mathrm{O}$ distances are between 1.892 (2) and 2.318 (3) \AA, and the $\mathrm{Mn}-\mathrm{N}$ distances are 2.287 (3) and 2.302 (4) \AA. The magnetic moment at 300 K amounts to $\mu_{\mathrm{exp}}=5.66 \mu_{\mathrm{B}}$.

Comment

The complex $\left[\mathrm{Mn}_{6} \mathrm{O}_{2}(\mathrm{OAc})_{10} \mathrm{py}_{4}\right]$.py (OAc is acetate and py is pyridine), (I), was obtained as a by-product in

